Chapter 6 Thermochemistry (Chapter 5 in OpenStax)

Heat and Energy

- Thermochemistry is the study of quantities of heat (q)
absorbed or evolved (given off) by a chemical reaction.
- Heat is energy that flows into or out of a system due to a difference between the system's T and the surrounding's T .
- Energy is the capacity to move matter.
- Total Energy is the sum of kinetic, potential, and internal energies.

$$
\mathbf{E}_{\text {total }}=\mathbf{E}_{\mathrm{k}}+\mathbf{E}_{\mathrm{p}}+\mathbf{U}
$$

- Kinetic Energy $\left(\mathrm{E}_{\mathrm{k}}\right)$ is due to motion. It is a function of mass (m) and velocity (v).

$$
E_{k}=(1 / 2) m v^{2}
$$

- Potential Energy $\left(E_{p}\right)$ is due to position in a field of force.

The gravitational constant (g) is $9.81 \mathrm{~m} / \mathrm{s}^{2}$, and the height (h) is in meters.

$$
\mathbf{E}_{\mathbf{p}}=\mathbf{m g h}
$$

- Internal Energy (U) is the combined kinetic and potential energies of particles (molecules) within a system.

Ex 6.01 Calculate the Kinetic Energy of a Basketball in a 2-Point Shot

- $\mathrm{E}_{\mathrm{k}}=(1 / 2) \mathrm{mv}^{2}=(1 / 2)(0.624 \mathrm{~kg})(4.47 \mathrm{~m} / \mathrm{s})^{2}=6.23 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=6.23$ Joules

Law of Conservation of Energy

- Energy may be converted between forms, but total quantity of energy is constant.
- Energy is never created or destroyed, it only changes forms.

Heat of Reaction

- Heat of Reaction is the heat required to keep T of a reacting system constant.
- An Exothermic reaction evolves (releases) heat, so that T increases.
$\mathbf{q}<\mathbf{0}$ and system gives away heat to the surroundings ($\Delta \mathbf{T}>\mathbf{0}$)
- An Endothermic reaction absorbs heat, so that T decreases.
$\mathbf{q}>\mathbf{0}$ and system draws heat from the surroundings $(\Delta \mathbf{T}<\mathbf{0})$
Heat of Reaction at Constant Pressure
- Enthalpy (H) is a measure of a system's heat energy. $\quad \mathrm{H}=\mathrm{U}+\mathrm{PV}$
- Enthalpy is a state function.

That is, it depends only on present state (T and P), not on history.

- For a reaction at constant pressure, the change in enthalpy is equal to the heat of reaction.

$$
\mathbf{q}_{\mathbf{p}}=\Delta \mathbf{H}
$$

- Since $\quad \Delta \mathbf{H}=\Delta \mathbf{U}+\mathbf{P} \Delta \mathbf{V} \quad$ we also have $\quad \Delta \mathbf{U}=\mathbf{q}_{\mathbf{p}}-\mathbf{P} \Delta \mathbf{V}$

Thermodynamic Equation for a Reaction

- Uses phase subscripts, has molar basis, and $\Delta \mathrm{H}$ is written
after the reaction for the molar amounts as written.
- Rules for writing the equation:

1. If reaction quantities are multiplied by any factor, then $\Delta \mathrm{H}$ is as well.
2. Reverse reaction has opposite sign for $\Delta \mathrm{H}$ (that is, reaction is multiplied by -1)

Ex 6.02 Write a Thermodynamic Equation for an Exothermic Reaction

- Potassium hydroxide, $\mathrm{KOH}_{(\mathrm{aq})}$, reacts with hydrochloric acid, $\mathrm{HCl}_{(\mathrm{aq})}$.
- The reaction releases 55.9 kJ per mole of KOH .
- The thermodynamic equation is: $\mathrm{KOH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{KCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \quad \Delta \mathrm{H}=-55.9 \mathrm{~kJ}$

Ex 6.03 Multiplying a Reaction by Factors

- $\quad 2 \times\left[\mathrm{H}_{3} \mathrm{O}^{+1}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-1}{ }_{(\text {aq) }} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \quad \Delta \mathrm{H}=-55.9 \mathrm{~kJ}\right]$

$$
=2 \mathrm{H}_{3} \mathrm{O}^{+1}{ }_{(\mathrm{aq})}+2 \mathrm{OH}^{-1}{ }_{(\mathrm{aq})} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \quad \Delta \mathrm{H}=-111.8 \mathrm{~kJ}
$$

- Multiply by -1 to get the reverse reaction:

$$
4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \rightarrow 2 \mathrm{H}_{3} \mathrm{O}_{(\text {aq })}^{+1}+2 \mathrm{OH}_{(\text {aq })}^{-1} \Delta \mathrm{H}=+111.8 \mathrm{~kJ}
$$

Stoichiometry and Thermochemistry

- The quantity of heat is proportional to the quantities of reactant and products.
- To determine the amount of heat, first convert mass (g) to moles by dividing by molar mass.

Then, total $\mathbf{q}=($ moles $)\left(\frac{\Delta \mathbf{H}}{\text { coefficient }}\right)$
Ex 6.04 Determine the Amount of Heat Released when $4.536 \times 10^{2} \mathrm{~g}$ of Ammonia is Produced.

- The thermodynamic equation is: $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-92.38 \mathrm{~kJ}$
- $\mathrm{q}=\left(4.536 \times 10^{2} \mathrm{~g}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.03 \mathrm{~g}}\right)\left(\frac{-92.38 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{NH}_{3}}\right)=-1.230 \times 10^{3} \mathrm{~kJ}$

Heat Capacity

- Heat Capacity (C) is the quantity of heat needed to raise T of an entire system by $1^{\circ} \mathrm{C}$.

$$
\mathbf{q}=\mathbf{C}(\Delta \mathbf{T}) \quad \text { SI units for } \mathrm{C} \text { are } \mathrm{J} /{ }^{\circ} \mathrm{C}
$$

- Molar Heat Capacity $\left(\mathrm{C}_{\text {molar }}\right)$ is the quantity of heat needed to raise T of one mole by $1{ }^{\circ} \mathrm{C}$.

$$
\mathbf{q}=\left(\mathbf{C}_{\text {molar }}\right)(\mathbf{n})(\Delta \mathbf{T}) \quad \text { SI units for }\left(\mathrm{C}_{\text {molar }}\right) \text { are } \mathrm{J} /\left(\mathrm{mol}{ }^{\circ} \mathrm{C}\right) .
$$

- Specific Heat is the quantity of heat needed to raise T of one gram by $1^{\circ} \mathrm{C}$.

$$
\mathbf{q}=(\mathbf{s})(\mathbf{m})(\Delta \mathbf{T}) \quad \text { SI units for } \mathrm{s} \text { are } \frac{\mathrm{J}}{\left(\mathrm{~g}{ }^{\circ} \mathrm{C}\right)}, \text { but } \frac{\text { calories }}{\left(\mathrm{g}^{\circ} \mathrm{C}\right)} \text { are sometimes used. }
$$

- For $\mathrm{H}_{2} \mathrm{O}, \mathrm{s}=1.00$ calories $/\left(\mathrm{g}^{\circ} \mathrm{C}\right)=4.18 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$, where $1 \mathrm{cal}=4.18 \mathrm{~J}$

This means 1 cal (or 4.18 J) will raise T of 1 g of $\mathrm{H}_{2} \mathrm{O}$ by $1^{\circ} \mathrm{C}$.

- Specific heats and molar heat capacities are measurable physical properties.

Ex 6.05 Find Heat required to increase Temperature of $24.625 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ from $12.2{ }^{\circ} \mathrm{C}$ to $27.4^{\circ} \mathrm{C}$

- $\Delta \mathrm{T}=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}=\left(27.4^{\circ} \mathrm{C}\right)-\left(12.2^{\circ} \mathrm{C}\right)=15.2{ }^{\circ} \mathrm{C}$
- $\mathrm{q}=(\mathrm{s})(\mathrm{m})(\Delta \mathrm{T})=\left(4.184 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}\right)(24.625 \mathrm{~g})\left(15.2^{\circ} \mathrm{C}\right)=1.57 \times 10^{3} \mathrm{~J}$
- $\mathrm{q}=\left(1.57 \times 10^{3} \mathrm{~J}\right)(1 \mathrm{~kJ} / 1000 \mathrm{~J})=1.57 \mathrm{~kJ}$

Calorimeter

- A calorimeter determines $\Delta \mathrm{H}$ (in $\mathrm{kJ} / \mathrm{mol}$) that is absorbed (positive) or released (negative) by measuring $\Delta \mathrm{T}$ of surroundings (which is often water).
- See Figures 5.12 and 5.13.

Ex 6.06 Combustion of 4.29 g of hydrogen $\left(\mathrm{H}_{2}\right)$ raises calorimeter T from 25.15 to $45.76{ }^{\circ} \mathrm{C}$

- Combustion releases heat, so $\Delta \mathrm{H}$ of reaction is negative and the reaction is exothermic.
- $\mathrm{C}=25.0 \frac{\mathrm{~kJ}}{{ }^{\circ} \mathrm{C}}$ and $\mathrm{q}=-\mathrm{C}(\Delta \mathrm{T})=-\left(25.0 \frac{\mathrm{~kJ}}{{ }^{{ }^{\mathrm{O}} \mathrm{C}}}\right)\left(45.76-25.15^{\circ} \mathrm{C}\right)=-515 \mathrm{~kJ}$
- $\quad(4.29 \mathrm{~g})\left(\frac{1 \mathrm{~mol} \mathrm{H} 2}{2.016 \mathrm{~g}}\right)=2.13 \mathrm{~mol}$ of hydrogen
- $\Delta \mathrm{H}=\frac{-515 \mathrm{~kJ}}{2.13 \mathrm{~mol}}=-242 \mathrm{~kJ}$ per mole of H_{2}
- $\mathrm{H}_{2(\mathrm{~g})}+(1 / 2) \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+242 \mathrm{~kJ} / \mathrm{mol} \quad$ (Heat is a product.)

Hess' Law of Heat Summation

- If a reaction can be written as the sum of other reactions as its components, then the overall $\Delta \mathrm{H}$ is the sum of the $\Delta \mathrm{H}$'s for individual component reactions.

Ex 6.07 Add Reactions and Enthalpies together to determine the Enthalpy of the Sum Reaction

- Reaction 1 :

$$
\mathrm{ZnS}_{(\mathrm{s})} \rightarrow \mathrm{Zn}_{(\mathrm{s})}+\mathrm{S}_{(\mathrm{s})} \quad \Delta \mathrm{H}=+206.0 \mathrm{~kJ}
$$

- Reaction 2: $\quad \mathrm{S}_{(\mathrm{s})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \Delta \mathrm{H}=-20.5 \mathrm{~kJ}$
- Sum:

$$
\mathrm{ZnS}_{(\mathrm{s})}+\mathrm{S}_{(\mathrm{s})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{Zn}_{(\mathrm{s})}+\mathrm{S}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}
$$

- Simplify:
- Enthalpy: $\quad \Delta \mathrm{H}=(+206.0 \mathrm{~kJ})+(-20.5 \mathrm{~kJ})=+185.5 \mathrm{~kJ}$ overall (endothermic)

Ex 6.08 Apply Factors to Reactions prior to Summation

- Double Reaction 1: $\quad 2 \times\left[\mathrm{C}_{(\text {graphite })}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-393.5 \mathrm{~kJ}\right]$
- Reverse Reaction 2: $-1 \times\left[2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-566.0 \mathrm{~kJ}\right]$
- Result 1 :

$$
2 \mathrm{C}_{(\text {graphite })}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-787.0 \mathrm{~kJ}
$$

- Result 2:
$2 \mathrm{CO}_{2(\mathrm{~g}))} \rightarrow 2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=+566.0 \mathrm{~kJ}$
- Unsimplified Sum:
$2 \mathrm{C}_{\text {(graphite) }}+2 \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{CO}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})}$
- Simplified Sum: $\quad 2 \mathrm{C}_{(\text {graphite })}+1 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{(\mathrm{g})}$
- Enthalpy of Sum: $\quad \Delta \mathrm{H}=-787.0 \mathrm{~kJ}+566.0 \mathrm{~kJ}=-221.0 \mathrm{~kJ}$ overall (exothermic)

Standard Enthalpy of Formation $\left(\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\right)$

- Determined from reactions which form substances from elements at standard conditions.
- Degree sign $\left({ }^{\circ}\right)$ means reaction is at standard state (298 K and 1 atm).
- Each element is in its reference form, which is the most stable form at standard state.
- Different forms of an element are called allotropes. Graphite and diamond are both allotropes of carbon. Graphite, however, is the reference form because it is more common.

The Standard Enthalpies of Formation Table has $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$'s in $\mathrm{kJ} / \mathrm{mol}$

- For an element in its reference form, $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ is zero.
- Note phase subscripts. The enthalpy values are different for different phases.

Different phases have different $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\prime}$'s basically because phase changes require heat.

- Values for ions in table are not absolute, but are relative to their ionic reactions with $\mathrm{H}^{+1}{ }_{\text {(aq) }}$.
- To find $\Delta \mathrm{H}^{\mathrm{o}}$ for a chemical reaction, use $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ of reactants and products.
$\Delta \mathbf{H}^{\mathbf{o}}{ }_{\text {reaction }}=\Sigma \mathbf{n} \Delta \mathbf{H}_{\mathbf{f}}^{\mathbf{o}}$ (products) $-\Sigma \mathbf{m} \Delta \mathbf{H}_{\mathbf{f}}^{\mathbf{o}}$ (reactants)
Multiply the $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ values by stoichiometric coefficients (n and m) in the balanced reaction.
Ex 6.09 Determine an Enthalpy of Vaporization (a physical change only) at Standard State
- We can write the vaporization of water as a reaction (where $\mathrm{n}=\mathrm{m}=1$): $1 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \rightarrow 1 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
- $\Delta \mathrm{H}_{\text {vap'n }}^{\mathrm{o}}=\left[1 \times \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right)\right]-\left[1 \times \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}\right)\right]$
$-\Delta \mathrm{H}_{\text {vap' } \mathrm{n}}^{\mathrm{o}}=[1 \times(-241.83 \mathrm{~kJ} / \mathrm{mol})]-[1 \times(-285.84 \mathrm{~kJ} / \mathrm{mol})]=+44.01 \mathrm{~kJ}\left(\right.$ per $\left.1 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$
- This means +44.01 kJ are required to vaporize one mole of liquid $\mathrm{H}_{2} \mathrm{O}$ at 298 K and 1 atm .

Ex 6.10 Use Enthalpies of Formation $\left(\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\right)$ to Determine the Enthalpy $\left(\Delta \mathrm{H}^{0}\right)$
of a Chemical Reaction at Standard State (298 K and 1 atm)
$-4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

- $\Delta \mathrm{H}^{\mathrm{o}}=\Sigma \mathrm{n} \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ (products) $-\Sigma \mathrm{m} \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ (reactants)
$-\Delta \mathrm{H}^{\mathrm{o}}=\left[4 \times \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{NO}_{(\mathrm{g})}\right)+6 \times \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right)\right]-\left[4 \times \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{NH}_{3(\mathrm{~g})}\right)+5 \times \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{O}_{2(\mathrm{~g})}\right)\right]$
$-\Delta \mathrm{H}^{0}=[4 \times(90.4)+6 \times(-241.8)]-[4 \times(-46.2)+5 \times(0.0)]=-904.4 \mathrm{~kJ}$
- This means 904.4 kJ are released when $4 \mathrm{~mol} \mathrm{NH}_{3(\mathrm{~g})}$ are consumed.
- The thermodynamic conversion factor is $\left(\frac{-904.4 \mathrm{~kJ}}{4 \mathrm{~mol} \mathrm{NH}_{3}}\right)$.

